Shape dynamics and rheology of soft elastic particles in a shear flow.
نویسندگان
چکیده
The shape dynamics of soft, elastic particles in an unbounded simple shear flow is investigated theoretically under Stokes flow conditions. Three types of motion-steady-state, trembling, and tumbling-are predicted, depending on the shear rate, elastic shear modulus, and initial particle shape. The steady-state motion is found to be always stable. In addition, the existence of a trembling regime is documented for the first time in nonvesicle systems, and a complete phase diagram is developed. The rheological properties of dilute suspensions of such soft particles generally exhibit shear-thinning behavior and can even display negative intrinsic viscosity for sufficiently soft particles.
منابع مشابه
Dynamics of prolate spheroidal elastic particles in confined shear flow.
We investigate through numerical simulations the dynamics of a neo-Hookean elastic prolate spheroid suspended in a Newtonian fluid under shear flow. Both initial orientations of the particle within and outside the shear plane and both unbounded and confined flow geometries are considered. In unbounded flow, when the particle starts on the shear plane, two stable regimes of motion are found, i.e...
متن کاملElastic granular flows of ellipsoidal particles
Granular flow rheology can be divided into two global regimes: the elastic, which is dominated by force chains, and the inertial, which is nearly free of force chains. As the propensity of a material to form force chains should be strongly influenced by particle shape, this paper is an attempt to assess the effects of shape on flow regime transitions through computer simulations of shear flow o...
متن کاملElastic Flows Of Ellipsoidal Particles
Granular flow rheology can be divided into two global regimes, the Elastic, which is dominated by force chains and the inertial which are nearly free of force chains. The propensity of a material to form force chains is strongly influenced by particle shape. This paper is an attempt to assess the effect of particle shape on flow regime transitions, through computer simulations of shear flow of ...
متن کاملDisentangling glass and jamming physics in the rheology of soft materials
The shear rheology of soft particle systems becomes complex at large density because crowding effects may induce a glass transition for Brownian particles or a jamming transition for non-Brownian systems. Here we successfully explore the hypothesis that the shear stress contributions from glass and jamming physics are ‘additive’. We show that the experimental flow curves measured in a large var...
متن کاملShear flow of angular grains: acoustic effects and nonmonotonic rate dependence of volume.
Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 108 5 شماره
صفحات -
تاریخ انتشار 2012